Send to

Choose Destination
Cell Calcium. 2003 Aug;34(2):177-84.

Differential functional interaction of two Vesl/Homer protein isoforms with ryanodine receptor type 1: a novel mechanism for control of intracellular calcium signaling.

Author information

Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA.


Vesl/Homer proteins physically link proteins that mediate cellular signaling [Curr. Opin. Neurobiol. 10 (2000) 370; Trends Neurosci. 23 (2000) 80; J. Cell Sci. 113 (2000) 1851] and thereby influence cellular function [Nat. Neurosci. 4 (2001) 499; Nature 411 (2001) 962]. A previous study reported that Vesl-1L/Homer-1c (V-1L) controls the gain of the intracellular calcium activated calcium channel ryanodine receptor type 1 (RyR1) channel [J. Biol Chem. 277 (2002) 44722]. Here, we show that the function of RyR1 is differentially regulated by two isoforms of Vesl-1/Homer-1, V-1L and Vesl-1S/Homer-1a (V-1S). V-1L increases the activity of RyR1 while important regulatory functions and pharmacological characteristics are preserved. V-1S alone had no effect on RyR1, even though, like V-1L, it is directly bound to the channel. However, V-1S dose-dependently decreased the effects of V-1L on RyR1, providing a novel mechanism for the regulation of intracellular calcium channel activity and calcium homeostasis by changing expression levels of Vesl/Homer proteins.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center