Format

Send to

Choose Destination
See comment in PubMed Commons below
J Pharmacol Exp Ther. 2003 Sep;306(3):1050-7. Epub 2003 Jun 13.

Inhibition of canine (NCX1.1) and Drosophila (CALX1.1) Na(+)-Ca(2+) exchangers by 7-chloro-3,5-dihydro-5-phenyl-1H-4,1-benzothiazepine-2-one (CGP-37157).

Author information

1
Institute of Cardiovascular Sciences, University of Manitoba Faculty of Medicine, St Boniface Research Centre, Winnipeg, Manitoba, Canada.

Abstract

The electrophysiological effects of the benzothiazepine 7-chloro-3,5-dihydro-5-phenyl-1H-4,1-benzothiazepine-2-one (CGP-37157) (CGP) were investigated on the canine (NCX1.1) and Drosophila (CALX1.1) plasmalemmal Na+-Ca2+ exchangers. These exchangers were selected for study because they show opposite responses to cytoplasmic regulatory Ca2+, thereby allowing us to examine the role of this regulatory mechanism in the inhibitory effects of CGP. CGP blocked Na+-Ca2+ exchange current mediated by both transporters with moderate potency (IC50 values = approximately 3-17 microM) compared with other recently reported blockers of Na+-Ca2+ exchange [e.g., 2-[4-[2,5-difluorophenyl) methoxy]phenoxy]phenoxy]-5-ethoxyaniline (KB-R7943) and 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea (SEA0400)]. Experiments using alpha-chymotrypsin to remove autoregulation of Na+-Ca2+ exchange showed that block by CGP was reduced, suggesting that part of the effects of this drug may require intact ionic regulatory mechanisms. For NCX1.1, the inhibition produced by CGP was greater for outward Na+-Ca2+ exchange currents compared with inward currents. When CALX1.1 was examined, the extent of inhibition was similar for both inward and outward exchange currents. Although the extent and potency of CGP-mediated inhibition of Na+-Ca2+ exchange are less than those observed with SEA0400 and KB-R7943, our data demonstrate that CGP constitutes a novel class of plasmalemmal Na+-Ca2+ exchange inhibitors. Moreover, the widespread use of CGP as a selective mitochondrial Na+-Ca2+ exchange inhibitor should be reconsidered in light of these additional inhibitory effects.

PMID:
12808003
DOI:
10.1124/jpet.103.053389
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center