Send to

Choose Destination
J Appl Microbiol. 2003;95(1):167-79.

Studies on the mechanism of the osmoresistance of spores of Bacillus subtilis.

Author information

Department of Biochemistry, University of Connecticut Health Center, Farmington, CT 06032, USA.



To determine the reason that spores of Bacillus species, in particular Bacillus subtilis, are able to form colonies with high efficiency on media with very high salt concentrations.


Spores of various Bacillus species have a significantly higher plating efficiency on media with high salt concentration (termed osmoresistance) than do log or stationary phase cells. This spore osmoresistance is higher on richer media. Bacillus subtilis spores lacking various small, acid-soluble spore proteins (SASP) were generally significantly less osmoresistant than were wild-type spores, as shown previously (Ruzal et al. 1994). Other results included: (a) spore osmoresistance varied significantly between species; (b) the osmoresistance of spores lacking SASP was not restored well by amino acid osmolytes added to plating media, but was completely restored by glucose; (c) the osmoresistance of spores lacking SASP was restored upon brief germination in the absence of salt in a process that did not require protein synthesis; (d) significant amounts of amino acids generated by SASP degradation were retained within spores upon germination in a medium with high but not low salt; (e) slowing but not abolishing SASP degradation by loss of the SASP-specific germination protease (GPR) did not affect spore osmoresistance; (f) sporulation at higher temperatures produced less osmoresistant spores; and (g) spore osmoresistance was not decreased markedly by the absence of the stress sigma factor for RNA polymerase, sigmaB.


Spore osmoresistance appears as a result of three major factors: (1) specific characteristics of spores and cells of individual species; (2) the precise sporulation conditions that produce the spores; and (3) sufficient energy generation by the germinating and outgrowing spore to allow the spore to adapt to conditions of high osmotic strength; the substrates for this energy generation can come from either the endogenous generation of amino acids by SASP degradation or from the spore's environment, in the form of a readily taken up and metabolized energy source such as glucose. SIGNFICANCE AND IMPACT OF STUDY: These results provide information on the mechanisms of spore osmoresistance, a spore property that can be of major applied significance given the use of high osmotic strength with or without high salt as a means of food preservation.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center