Send to

Choose Destination
Biol Cell. 2003 Mar-Apr;95(2):87-97.

The interaction of two classes of nuclear vesicles is induced by the dissociation of soluble proteins from one class of vesicles.

Author information

Department of Biology, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Osaka, Japan.


The regulatory mechanism of fusion steps in nuclear envelope assembly was studied in vitro using cell-free extracts of Xenopus eggs. The nuclear envelope is formed only around the chromatin at the end of mitosis. Two kinds of vesicles are required for nuclear envelope assembly (J. Cell Biol. 112 (1991) 545). Light vesicles (LVs) have the chromatin-binding activity, but cannot fuse solely. On the other hand, heavy vesicles (HVs) neither bind to the chromatin nor LVs, but are needed for the fusion event. Therefore, the association of HVs with LVs that bind to the chromatin is required at a first step during the fusion of vesicles. We found that salt-treated HVs inhibited the binding of LVs to the chromatin. In addition, when salt-treated HVs were pretreated with the proteins in the residue of salt-treatment of HVs, LVs recovered the chromatin-binding activity. In contrast, salt-treatment of LVs did not influence the binding of LVs with chromatin. By using a fluorescence microscopy assay, we showed directly that salt-treated HVs associated with LVs or salt-treated LVs, but HVs did not. These results suggest that soluble mask proteins on HVs keep the two distinct vesicles separate. We propose that the dissociation of mask protein on HVs allows HVs to bind with LVs that are located on the chromatin, subsequently the fusion of each vesicle occurs and the nuclear envelope is formed.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center