Send to

Choose Destination

Liquid chromatography with amperometric detection using functionalized multi-wall carbon nanotube modified electrode for the determination of monoamine neurotransmitters and their metabolites.

Author information

Department of Chemistry, East China Normal University, ZhingShan Road North 3663, Shanghai 200062, China.


The fabrication and application of a novel electrochemical detection (ED) method with the functionalized multi-wall carbon nanotubes (MWNTs) chemically modified electrode (CME) for liquid chromatography (LC) were described. The electrochemical behaviors of dopamine (DA) and other monoamine neurotransmitters at the CME were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results indicated that the CME exhibited efficient electrocatalytic effects on the current responses of monoamine neurotransmitters and their metabolites with high sensitivity, high stability and long-life activity. In LC-ED, DA, norepinephrine (NE), 3-methoxy-4-hydroxyphenylglycol (MHPG), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) had good and stable current responses at the CME. The linear ranges of seven analytes were over four orders of magnitude and the detection limits were 2.5 x 10(-10) mol/l for DA, 2.5 x 10(-10) mol/l for NE, 5.0 x 10(-10) mol/l for MHPG, 3.0 x 10(-10) mol/l for DOPAC, 3.5 x 10(-10) mol/l for 5-HT, 6.0 x 10(-10) mol/l for 5-HIAA, 1.25 x 10(-9) mol/l for HVA. The application of this method coupled with microdialysis sampling for the determination of monoamine neurotransmitters and their metabolites in Parkinsonian patients' cerebrospinal fluid was satisfactory.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center