Send to

Choose Destination
See comment in PubMed Commons below
J Urol. 2003 Jul;170(1):246-52.

Nitrogen containing bisphosphonates induce apoptosis and inhibit the mevalonate pathway, impairing Ras membrane localization in prostate cancer cells.

Author information

Department of Urology, St. George's Hospital and Medical School, First Floor, Ingleby House, Blackshaw Road, London SW17 0QT, UK.



Metastasis to bone is an important cause of morbidity in advanced prostate cancer. Despite the typically sclerotic nature of prostatic bone metastases osteolysis has a significant role in the pathogenesis of this disease. The nitrogen containing bisphosphonates (N-BPs), such as pamidronate and zoledronic acid, have greatly enhanced potency for inhibiting bone resorption and inducing apoptosis in osteoclasts. We investigated the effects of N-BPs on prostate cancer cells.


Cell viability was determined with an MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymeyhoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) dye reduction assay. Cell cycle analysis, DNA fragmentation and caspase 3 activity were assessed using flow cytometry. Ras, Bcl-2 and Bax were quantified by Western blotting.


Pamidronate and zoledronic acid decreased cell viability in the 3 human cell lines DU145, PC3 and LNCaP. These effects were associated with changes in cell cycle distribution, induction of DNA fragmentation and a decrease in the Bcl-2-to-Bax ratio, which are features of apoptotic cell death. Pre-incubation with caspase inhibitors attenuated the effects of zoledronic acid and caspase 3 activity was demonstrated in treated DU145 cells. Zoledronic acid induced loss of cell viability in DU145 cells was prevented by co-treatment with farnesol, suggesting that N-BPs cause inhibition of the mevalonate pathway and Ras prenylation. A decrease in active, membrane bound Ras in zoledronic acid treated DU145 cells was shown by Western blot analysis.


N-BPs induce apoptosis in prostate cancer via a caspase dependent mechanism. They have effects on protein prenylation via inhibition of the mevalonate pathway and impair membrane localization of Ras in prostate cancer cells.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center