Format

Send to

Choose Destination
See comment in PubMed Commons below
J Urol. 2003 Jul;170(1):246-52.

Nitrogen containing bisphosphonates induce apoptosis and inhibit the mevalonate pathway, impairing Ras membrane localization in prostate cancer cells.

Author information

1
Department of Urology, St. George's Hospital and Medical School, First Floor, Ingleby House, Blackshaw Road, London SW17 0QT, UK.

Abstract

PURPOSE:

Metastasis to bone is an important cause of morbidity in advanced prostate cancer. Despite the typically sclerotic nature of prostatic bone metastases osteolysis has a significant role in the pathogenesis of this disease. The nitrogen containing bisphosphonates (N-BPs), such as pamidronate and zoledronic acid, have greatly enhanced potency for inhibiting bone resorption and inducing apoptosis in osteoclasts. We investigated the effects of N-BPs on prostate cancer cells.

MATERIALS AND METHODS:

Cell viability was determined with an MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymeyhoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) dye reduction assay. Cell cycle analysis, DNA fragmentation and caspase 3 activity were assessed using flow cytometry. Ras, Bcl-2 and Bax were quantified by Western blotting.

RESULTS:

Pamidronate and zoledronic acid decreased cell viability in the 3 human cell lines DU145, PC3 and LNCaP. These effects were associated with changes in cell cycle distribution, induction of DNA fragmentation and a decrease in the Bcl-2-to-Bax ratio, which are features of apoptotic cell death. Pre-incubation with caspase inhibitors attenuated the effects of zoledronic acid and caspase 3 activity was demonstrated in treated DU145 cells. Zoledronic acid induced loss of cell viability in DU145 cells was prevented by co-treatment with farnesol, suggesting that N-BPs cause inhibition of the mevalonate pathway and Ras prenylation. A decrease in active, membrane bound Ras in zoledronic acid treated DU145 cells was shown by Western blot analysis.

CONCLUSIONS:

N-BPs induce apoptosis in prostate cancer via a caspase dependent mechanism. They have effects on protein prenylation via inhibition of the mevalonate pathway and impair membrane localization of Ras in prostate cancer cells.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center