Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2003 Jun 15;170(12):6257-65.

A prominent role for airway epithelial NF-kappa B activation in lipopolysaccharide-induced airway inflammation.

Author information

Vermont Lung Center and Department of Medicine, University of Vermont, Burlington, VT 05405, USA.


To reveal the causal role of airway epithelial NF-kappaB activation in evoking airway inflammation, a transgenic mouse was created expressing a mutant version of the inhibitory protein I-kappaBalpha. This I-kappaBalpha superrepressor (I-kappaBalpha(SR)) acts to repress NF-kappaB activation exclusively in airway epithelial cells, under the transcriptional control of the rat CC10 promoter (CC10-I-kappaBalpha(SR)). Compared with transgene-negative littermates, intranasal instillation of LPS did not induce nuclear translocation of NF-kappaB in airway epithelium of CC10-I-kappaBalpha(SR) transgenic mice. Consequently, the influx of neutrophils into the airways and secretion of the NF-kappaB-regulated neutrophilic chemokine, macrophage-inflammatory protein-2, and the inflammatory cytokine, TNF-alpha, were markedly reduced in CC10-I-kappaBalpha(SR) mice relative to the transgene-negative mice exposed to LPS. Despite an inability to activate NF-kappaB in airway epithelium, resident alveolar macrophages from transgene-positive mice were capable of activating NF-kappaB in a manner indistinguishable from transgene-negative mice. These findings demonstrate that airway epithelial cells play a prominent role in orchestrating the airway inflammatory response to LPS and suggest that NF-kappaB signaling in these cells is important for modulating innate immune responses to microbial products.

[Indexed for MEDLINE]
Free full text

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms


Grant support

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center