Send to

Choose Destination
J Neurophysiol. 2003 Jun;89(6):3070-82.

Differential expression of three distinct potassium currents in the ventral cochlear nucleus.

Author information

The Center for Hearing Science, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.


In the ventral cochlear nucleus (VCN), neurons transform information from auditory nerve fibers into a set of parallel ascending pathways, each emphasizing different aspects of the acoustic environment. Previous studies have shown that VCN neurons differ in their intrinsic electrical properties, including the K+ currents they express. In this study, we examine these K+ currents in more detail using whole cell voltage-clamp techniques on isolated VCN cells from adult guinea pigs at 22 degrees C. Our results show a differential expression of three distinct K+ currents. Whereas some VCN cells express only a high-threshold delayed-rectifier-like current (IHT), others express IHT in combination with a fast inactivating current (IA) and/or a slow-inactivating low-threshold current (ILT). IHT, ILT, and IA, were partially blocked by 1 mM 4-aminopyridine. In contrast, only ILT was blocked by 10-100 nM dendrotoxin-I. A surprising finding was the wide range of levels of ILT, suggesting ILT is expressed as a continuum across cell types rather than modally in a particular cell type. IA, on the other hand, appears to be expressed only in cells that show little or no ILT, the Type I cells. Boltzmann analysis shows IHT activates with 164 +/- 12 (SE) nS peak conductance, -14.3 +/- 0.7 mV half-activation, and 7.0 +/- 0.5 mV slope factor. Similar analysis shows ILT activates with 171 +/- 22 nS peak conductance, -47.4 +/- 1.0 mV half-activation, and 5.8 +/- 0.3 mV slope factor.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center