Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2003 Aug 15;278(33):31192-201. Epub 2003 Jun 3.

Studies on the internalization mechanism of cationic cell-penetrating peptides.

Author information

1
Synt:em, Institut de Génétique Moléculaire, 1919 Route de Mende, 34293 Montpellier Cedex 5, France.

Abstract

A great deal of data has been amassed suggesting that cationic peptides are able to translocate into eucaryotic cells in a temperature-independent manner. Although such peptides are widely used to promote the intracellular delivery of bioactive molecules, the mechanism by which this cell-penetrating activity occurs still remains unclear. Here, we present an in vitro study of the cellular uptake of peptides, originally deriving from protegrin (the SynB peptide vectors), that have also been shown to enhance the transport of drugs across the blood-brain barrier. In parallel, we have examined the internalization process of two lipid-interacting peptides, SynB5 and pAntp-(43-58), the latter corresponding to the translocating segment of the Antennapedia homeodomain. We report a quantitative study of the time- and dose-dependence of internalization and demonstrate that these peptides accumulate inside vesicular structures. Furthermore, we have examined the role of endocytotic pathways in this process using a variety of metabolic and endocytosis inhibitors. We show that the internalization of these peptides is a temperature- and energy-dependent process and that endosomal transport is a key component of the mechanism. Altogether, our results suggest that SynB and pAntp-(43-58) peptides penetrate into cells by an adsorptive-mediated endocytosis process rather than temperature-independent translocation.

PMID:
12783857
DOI:
10.1074/jbc.M303938200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center