Send to

Choose Destination
Dev Biol. 2003 Jun 1;258(1):169-84.

Tissue interactions pattern the mesenchyme of the embryonic mouse lung.

Author information

Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-2175, USA.


The mechanisms that control proliferation and differentiation of embryonic lung mesenchyme are largely unknown. We describe an explant system in which exogenous recombinant N-Sonic Hedgehog (N-Shh) protein sustains the survival and proliferation of lung mesenchyme in a dose-dependent manner. In addition, Shh upregulates several mesenchymal cell markers, including its target gene Patched (Ptc), intercellular signaling genes Bone Morphogenetic Protein-4 (Bmp4) and Noggin (Nog), and smooth muscle actin and myosin. In explants exposed to N-Shh in the medium, these products are upregulated throughout the mesenchyme, but not in the periphery. This exclusion zone correlates with the presence of an overlying mesothelial layer, which, as in vivo, expresses Fibroblast Growth Factor 9 (Fgf9). Recombinant Fgf9 protein inhibits the differentiation response of the mesenchyme to N-Shh, but does not affect proliferation. We propose a model for how factors made by two epithelial cell populations, the inner endoderm and the outer jacket of mesothelium, coordinately regulate the proliferation and differentiation of the lung mesoderm.

[Indexed for MEDLINE]
Free full text

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms


Grant support

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center