Send to

Choose Destination
See comment in PubMed Commons below
Biochem Pharmacol. 2003 Jun 1;65(11):1777-85.

Induction of G1 phase arrest in MCF human breast cancer cells by pentagalloylglucose through the down-regulation of CDK4 and CDK2 activities and up-regulation of the CDK inhibitors p27(Kip) and p21(Cip).

Author information

Institute of Biochemistry, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, Taiwan, ROC.


Pentagalloylglucose (5GG) is a potent and specific inhibitor of NADPH dehydrogenase or xanthine oxidase. In our previous study, we showed that 5GG was able to induce apoptosis in HL-60 cells in a time- and concentration-dependent manner via the activation of caspase-3. Recently, we found that 5GG was capable of perturbing the cell cycle of the human breast cancer cell line MCF-7. DNA flow cytometric analysis showed that 5GG exhibited the ability of blocking MCF-7 cell cycle progression at the G1 phase. The level of several G1 phase-related cyclins and cyclin-dependent kinases did not change in these cells during a 24-hr exposure to 5GG. However, the activity of cyclin E/CDK2 was decreased in a concentration- and time-dependent manner and the activity of cyclin D/CDK4 was inhibited when serum-starved synchronized cells were released from synchronization. p27(Kip) and p21(Cip), inhibitors of cyclin/CDK complexes in G1-phase, were gradually increased after 5GG treatment in a time-dependent manner and the induction of p21(Cip) was correlated with an increase in p53 levels. These results suggest that the suppression of cell-cycle progression in the G1 phase by 5GG was mediated in MCF-7 cells, at least in part, by either the inhibition of cyclin D/CDK4 and cyclin E/CDK2 activity or the induction of the CDK inhibitors p27(Kip) and p21(Cip).

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center