More taxa, more characters: the hoatzin problem is still unresolved

Mol Biol Evol. 2003 Sep;20(9):1484-98. doi: 10.1093/molbev/msg157. Epub 2003 May 30.

Abstract

The apparently rapid and ancient diversification of many avian orders complicates the resolution of their relationships using molecular data. Recent studies based on complete mitochondrial DNA (mtDNA) sequences or shorter lengths of nuclear sequence have helped corroborate the basic structure of the avian tree (e.g., a basal split between Paleognathae and Neognathae) but have made relatively little progress in resolving relationships among the many orders within Neoaves. We explored the potential of a moderately sized mtDNA data set ( approximately 5000 bp for each of 41 taxa), supplemented with data from a nuclear intron ( approximately 700 bp per taxon), to resolve relationships among avian orders. Our sampling of taxa addresses two issues: (1). the sister relationship and monophyly, respectively, of Anseriformes and Galliformes and (2). relationships of the enigmatic hoatzin Opisthocomus hoazin. Our analyses support a basal split between Galloanserae and Neoaves within Neognathae and monophyly of both Galliformes and Anseriformes. Within Galliformes, megapodes and then cracids branch basally. Within Anseriformes, mitochondrial data support a screamer (Anhimidae) plus magpie goose (Anseranatidae) clade. This result, however, may be an artifact of divergent base composition in one of the two anatids we sampled. With deletion of the latter taxon, Anseranas is sister to anatids as in traditional arrangements and recent morphological studies. Although our data provide limited resolution of relationships within Neoaves, we find no support for a sister relationship between either cuckoos (Cuculiformes) or turacos (Musophagiformes) and hoatzin. Both mitochondrial and nuclear data are consistent with a relationship between hoatzin and doves (Columbiformes), although this result is weakly supported. We also show that mtDNA sequences reported in another recent study included pervasive errors that biased the analysis towards finding a sister relationship between hoatzin and turacos.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Birds / classification
  • Birds / genetics*
  • DNA, Mitochondrial / genetics*
  • Evolution, Molecular
  • Genetic Variation*
  • Phylogeny*

Substances

  • DNA, Mitochondrial