Format

Send to

Choose Destination
J Insect Physiol. 1999 Feb;45(2):159-166.

A baculovirus enhancin alters the permeability of a mucosal midgut peritrophic matrix from lepidopteran larvae.

Author information

1
Boyce Thompson Institute for Plant Research at Cornell University, 223 Boyce Thompson Institute, Ithaca, USA

Abstract

The peritrophic matrix (PM) in lepidopterous larvae may function as a defensive barrier against ingested viral pathogens. PMs isolated from Trichoplusia ni and Pseudaletia unipuncta larvae, were treated with a baculovirus-encoded metalloprotease (enhancin) from Trichoplusia ni granulosis virus (TnGV) and their in vitro permeability to blue dextran and fluorescent-labelled Autographa californica nuclear polyhedrosis virus (AcMNPV) was determined using a dual chamber permeability apparatus. Incubation of T. ni PMs with 0.0, 0.5, 1.0, and 2.0mg/ml enhancin resulted in a blue dextran 2000 flux of 4.4, 6.3, 9.9, and 15.6&mgr;g/mm(2)/h, respectively. In addition, T. ni PMs treated with enhancin were found to be significantly more permeable to fluorescent-labelled AcMNPV than non-treated control PMs. The permeability of T. ni PMs treated with 3.0mg/ml enhancin was 0.017 cumulative percent crossing/mm(2)/h, whereas the permeability of the control PM was below the detectable limit. Similarly, enhancin treatment greatly increased the permeability of P. unipuncta PMs to AcMNPV. These results provide evidence that the PM from two lepidopteran species can block the passage of baculovirions across this matrix thus reducing the probability of larval infection. Furthermore, these results support the hypothesis that enhancin facilitates NPV infection of larvae by altering the permeability of the PM.

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center