Format

Send to

Choose Destination
J Insect Physiol. 2002 Feb;48(2):255-267.

Motor control of the mandible closer muscle in ants.

Author information

1
Theodor Boveri Institut der Universität, Lehrstuhl für Verhaltensphysiologie und Soziobiologie, Am Hubland, D-97074, Würzburg, Germany

Abstract

Despite their simple design, ant mandible movements cover a wide range of forces, velocities and amplitudes. The mandible is controlled by the mandible closer muscle, which is composed of two functionally distinct subpopulations of muscle fiber types: fast fibers (short sarcomeres) and slow ones (long sarcomeres). The entire muscle is controlled by 10-12 motor neurons, 4-5 of which exclusively supply fast muscle fibers. Slow muscle fibers comprise a posterior and an antero-lateral group, each of which is controlled by 1-2 motor neurons. In addition, 3-4 motor neurons control all muscle fibers together. Simultaneous recordings of muscle activity and mandible movement reveal that fast movements require rapid contractions of fast muscle fibers. Slow and subtle movements result from the activation of slow muscle fibers. Forceful movements are generated by simultaneous co-activation of all muscle fiber types. Retrograde tracing shows that most dendritic arborizations of the different sets of motor neurons share the same neuropil in the subesophageal ganglion. In addition, fast motor neurons and neurons supplying the lateral group of slow closer muscle fibers each invade specific parts of the neuropil that is not shared by the other motor neuron groups. Some bilateral overlap between the dendrites of left and right motor neurons exists, particularly in fast motor neurons. The results explain how a single muscle is able to control the different movement parameters required for the proper function of ant mandibles.

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center