Format

Send to

Choose Destination
See comment in PubMed Commons below
J Insect Physiol. 1998 Feb;44(2):121-129.

Physiological trade-offs between reproduction, flight capability and longevity in a wing-dimorphic cricket, Modicogryllus confirmatus.

Author information

1
Department of Insect Physiology and Behavior, National Institute of Sericultural and Entomological Science, Ohwashi 1-2, Tsukuba, Ibaraki, Japan

Abstract

Physiological and morphological comparisons were made between the short-winged (SW) and long-winged (LW) morphs of a cricket, Modicogryllus confirmatus, to determine the cost of the flight capacity and the physiological mechanisms underlying trade-offs between different life history traits related to migration and reproduction. Both wingmorphs grew at a similar rate and no consistent correlation was found between nymphal development and adult body size. The metathoracic muscles at adult emergence represented 4.2% of the wet body weight in the SW morph and 10.5% in the LW morph. Fat content of the body at adult emergence was positively correlated to dry body weight, but no significant difference was found in mean fat content between the two wingmorphs or between sexes after body weight was adjusted. SW females fed ad libitum produced significantly more eggs than LW females during the first 20days of adult life. Egg production was not correlated to either body size or the duration of nymphal development. LW adults lived longer than SW ones when kept with water alone or when given various amounts of food on day 1 and otherwise kept with water alone. In females, a highly significant correlation was found between longevity and egg production, indicating the presence of a trade-off. LW females mainly allocated the energy from food to flight muscle development and general maintenance of the body rather than to egg production, whereas SW females used it for egg production and longevity. LW females that had been de-alated at adult emergence histolyzed the flight muscle and used the energy from food for egg production almost exclusively. These results suggest that energy allocation and trade-offs after adult emergence may play crucial roles in the functional differentiation of the two wingmorphs.

PMID:
12769884
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center