Format

Send to

Choose Destination
Biochemistry. 2003 Jun 3;42(21):6514-26.

Novel processing of beta-amyloid precursor protein catalyzed by membrane type 1 matrix metalloproteinase releases a fragment lacking the inhibitor domain against gelatinase A.

Author information

1
Division of Cell Biology, Kihara Institute for Biological Research, Yokohama City University, Maioka-cho 641-12, Totsuka-ku, Yokohama 244-0813, Japan. shigashi@yokohama-cu.ac.jp

Abstract

In various mammalian cell lines, beta-amyloid precursor protein (APP) is proteolytically processed to release its NH(2)-terminal extracellular domain as a soluble APP (sAPP) that contains the inhibitor domain against gelatinase A. To investigate roles of sAPP in the regulation of gelatinase A activity, we examined the correlation between the activation of progelatinase A and processing of APP. We found that stimulation of HT1080 fibrosarcoma cells with concanavalin A led to an activation of endogenous progelatinase A and to a novel processing of APP, which releases a COOH-terminally truncated form of sAPP (sAPPtrc) into the culture medium. Reverse zymographic analysis showed that sAPPtrc lacked an inhibitory activity against gelatinase A. Analyses of production of sAPPtrc in the presence of various metalloproteinase inhibitors showed that membrane type 1 matrix metalloproteinase (MT1-MMP), an activator of progelatinase A, is most likely responsible for the production of sAPPtrc. When the concanavalin A-stimulated HT1080 cells were cultured in the condition that inhibited MT1-MMP activity, sAPP and APP were associated with the extracellular matrix deposited by the cells, whereas these gelatinase A inhibitors in the matrix were displaced by sAPPtrc after exertion of MT1-MMP activity. Taken together, these data support a model in which MT1-MMP-catalyzed release of sAPPtrc leads to reduction of the extracellular matrix-associated gelatinase A inhibitor, sAPP, thus making it feasible for gelatinase A to exert proteolytic activity only near its activator, MT1-MMP.

PMID:
12767235
DOI:
10.1021/bi020643m
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center