Send to

Choose Destination
Diabetes. 2003 Jun;52(6):1441-8.

Fetal or neonatal low-glycotoxin environment prevents autoimmune diabetes in NOD mice.

Author information

Division of Experimental Diabetes and Aging, Department of Geriatrics, Mount Sinai School of Medicine, Box 1640, New York, NY 10029, USA.


Advanced glycation end products (AGEs) are implicated in beta-cell oxidant stress. Diet-derived AGE (dAGE) are shown to contribute to end-organ toxicity attributed to diabetes. To assess the role of dAGE on type 1 diabetes, NOD mice were exposed to a high-AGE diet (H-AGE) and to a nutritionally similar diet with approximate fivefold-lower levels of N(epsilon)-carboxymethyllysine (CML) and methylglyoxal-derivatives (MG) (L-AGE). Suppression of serum CML and MG in L-AGE-fed mice was marked by suppression of diabetes (H-AGE mice >94% vs. L-AGE mice 33% in founder [F](0), 14% in F(1), and 13% in F(2) offspring, P < 0.006) and by a delay in disease onset (4-month lag). Survival for L-AGE mice was 76 vs. 0% after 44 weeks of H-AGE mice. Reduced insulitis in L-AGE versus H-AGE mice (P < 0.01) was marked by GAD- and insulin-unresponsive pancreatic interleukin (IL)-4-positive CD4+ cells compared with the GAD- and insulin-responsive interferon (IFN)-gamma-positive T-cells from H-AGE mice (P < 0.005). Splenocytes from L-AGE mice consisted of GAD- and insulin-responsive IL-10-positive CD4+ cells compared with the IFN-gamma-positive T-cells from H-AGE mice (P < 0.005). Therefore, high AGE intake may provide excess antigenic stimulus for T-cell-mediated diabetes or direct beta-cell injury in NOD mice; both processes are ameliorated by maternal or neonatal exposure to L-AGE nutrition.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center