Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Nutr Soc. 2003 Feb;62(1):217-22.

Primary structure of arabinoxylans of ispaghula husk and wheat bran.

Author information

1
South Bank University, 103 Borough Road, London SE1 0AA, UK.

Abstract

The primary structures of ispaghula husk and wheat bran were investigated in order to determine how and why these fibres are among the most beneficial dietary fibres. To this end, the polysaccharide preparations have been subjected to enzymic hydrolysis and methylation analysis.The results have shown ispaghula husk and wheat bran to be very-highly-branched arabinoxylans consisting of linear f-D-(1-4)-linked xylopyranose (Xylp) backbones to which a-L-arabinofuranose (AraJ3 units are attached as side residues via a-(l13) and a-(1-02) linkages.Other substituents identified as present in wheat bran include P-D-glucuronic acid attached via the C(O)-2 position, and arabinose oligomers, consisting of two or more arabinofuranosyl residues linked via 1-2, 1-3, and 1-4 linkages. Ispaghula-husk arabinoxylan is more complex having additional side residues which include a-D-glucuronopyranose (GalAp)-(1-42)-linked-a-L-rhamnopyranose-(1-04)-0-D-Xylp, a-D-GalAp-(l-o3)-linked-a-L-Araf-(l-4)-[3-D-Xylp, and a-L-Araf-(l-43)-linked-P-D-Xylp-(1l -4)--D-Xylp. The beneficial effects of increased faecal bulk and water-holding capacity are undoubtedly related to the structures of the arabinoxylans, with differences in their efficacy to treat various functional bowel disorders due to their specific structural features.

PMID:
12756970
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Cambridge University Press
    Loading ...
    Support Center