Send to

Choose Destination
J Exp Biol. 2003 Jun;206(Pt 12):2011-20.

Myoglobin function reassessed.

Author information

Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.


The heart and those striated muscles that contract for long periods, having available almost limitless oxygen, operate in sustained steady states of low sarcoplasmic oxygen pressure that resist change in response to changing muscle work or oxygen supply. Most of the oxygen pressure drop from the erythrocyte to the mitochondrion occurs across the capillary wall. Within the sarcoplasm, myoglobin, a mobile carrier of oxygen, is developed in response to mitochondrial demand and augments the flow of oxygen to the mitochondria. Myoglobin-facilitated oxygen diffusion, perhaps by virtue of reduction of dimensionality of diffusion from three dimensions towards two dimensions in the narrow spaces available between mitochondria, is rapid relative to other parameters of cell respiration. Consequently, intracellular gradients of oxygen pressure are shallow, and sarcoplasmic oxygen pressure is nearly the same everywhere. Sarcoplasmic oxygen pressure, buffered near 0.33 kPa (2.5 torr; equivalent to approximately 4 micro mol l(-1) oxygen) by equilibrium with myoglobin, falls close to the operational K(m) of cytochrome oxidase for oxygen, and any small increment in sarcoplasmic oxygen pressure will be countered by increased oxygen utilization. The concentration of nitric oxide within the myocyte results from a balance of endogenous synthesis and removal by oxymyoglobin-catalyzed dioxygenation to the innocuous nitrate. Oxymyoglobin, by controlling sarcoplasmic nitric oxide concentration, helps assure the steady state in which inflow of oxygen into the myocyte equals the rate of oxygen consumption.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center