Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Lung Cell Mol Physiol. 2003 Sep;285(3):L593-601. Epub 2003 May 16.

Dexamethasone stimulates transcription of the Na+-K+-ATPase beta1 gene in adult rat lung epithelial cells.

Author information

Pulmonary and Critical Care Div., Dept. of Medicine, MMC 276, Univ. of Minnesota, Minneapolis, MN 55455, USA.


Na+-K+-ATPase plays an essential role in active alveolar epithelial fluid resorption. In fetal and adult alveolar epithelial cells, glucocorticoids (GC) increase Na+-K+-ATPase activity and mRNA levels. We sought to define the mechanism of Na+-K+-ATPase gene upregulation by GC. In a rat alveolar epithelial cell line (RLE), dexamethasone (Dex) increased beta1-subunit Na+-K+-ATPase mRNA expression two- to threefold within 3 h after exposure to the GC. The increased gene expression was due to increased transcription as demonstrated by nuclear run-on assays, whereas mRNA stability remained unchanged. Transient transfection of 5' deletion mutants of a beta1 promoter-reporter construct demonstrated a 1.5- to 2.2-fold increase in promoter activity by Dex. All of the 5' deletion constructs contained partial or palindromic GC regulatory elements (GRE) and responded to GC. The increased expression of promoter reporter was inhibited by RU-486, a GC receptor (GR) antagonist, suggesting the involvement of GR. The palindromic GRE at -631 demonstrated Dex induction in a heterologous promoter construct. Gel mobility shift assays using RLE nuclear extracts demonstrated specific binding to this site and the presence of GR. We conclude that GC directly stimulate transcription of Na+-K+-ATPase beta1 gene expression in adult rat lung epithelial cells through a GR-dependent mechanism that can act at multiple sites.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center