Send to

Choose Destination
Plasmid. 2003 May;49(3):233-52.

Nucleotide sequence based characterizations of two cryptic plasmids from the marine bacterium Ruegeria isolate PR1b.

Author information

Division of Biology, University of California, San Diego, La Jolla, CA 92093-0322, USA.


Two plasmids, 76 and 148 kb in size, isolated from Ruegeria strain PR1b were entirely sequenced. These are the first plasmids to be characterized from this genus of marine bacteria. Sequence analysis revealed a biased distribution of function among the putative proteins encoded on the two plasmids. The smaller plasmid, designated pSD20, encodes a large number of putative proteins involved in polysaccharide biosynthesis and export. The larger plasmid, designated pSD25, primarily encodes putative proteins involved in the transport of small molecules and in DNA mobilization. Sequence analysis revealed uncommon potential replication systems on both plasmids. pSD25, the first repABC-type replicon isolated from the marine environment, actually contains two repABC-type replicons. pSD20 contains a complex replication region, including a replication origin and initiation protein similar to iteron-containing plasmids (such as pSW500 from the plant pathogen Erwinia stewartii) linked to putative RepA and RepB stabilization proteins of a repABC-type replicon and is highly homologous to a plasmid from the phototrophic bacterium Rhodobacter sphaeroides. Given the nature of the putative proteins encoded by both plasmids it is possible that these plasmids enhance the metabolic and physiological flexibility of the host bacterium, and thus its adaptation to the marine sediment environment.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center