Format

Send to

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 2003 May;132(1):185-95.

Ethylene insensitivity modulates ozone-induced cell death in birch.

Author information

  • 1Institute of Biotechnology and Department of Biosciences, University of Helsinki, POB 56 (Viikinkaari 9), Finland.

Abstract

We have used genotypic variation in birch (Betula pendula Roth) to investigate the roles of ozone (O(3))-induced ethylene (ET), jasmonic acid, and salicylic acid in the regulation of tissue tolerance to O(3). Of these hormones, ET evolution correlated best with O(3)-induced cell death. Disruption of ET perception by transformation of birch with the dominant negative mutant allele etr1-1 of the Arabidopsis ET receptor gene ETR1 or blocking of ET perception with 1-methylcyclopropene reduced but did not completely prevent the O(3)-induced cell death, when inhibition of ET biosynthesis with aminooxyacetic acid completely abolished O(3) lesion formation. This suggests the presence of an ET-signaling-independent but ET biosynthesis-dependent component in the ET-mediated stimulation of cell death in O(3)-exposed birch. Functional ET signaling was required for the O(3) induction of the gene encoding beta-cyanoalanine synthase, which catalyzes detoxification of the cyanide formed during ET biosynthesis. The results suggest that functional ET signaling is required to protect birch from the O(3)-induced cell death and that a decrease in ET sensitivity together with a simultaneous, high ET biosynthesis can potentially cause cell death through a deficient detoxification of cyanide.

PMID:
12746524
PMCID:
PMC166964
DOI:
10.1104/pp.102.018887
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center