Format

Send to

Choose Destination
See comment in PubMed Commons below
Behav Brain Res. 2003 May 15;141(2):237-49.

Influence of task parameters on rotarod performance and sensitivity to ethanol in mice.

Author information

  • 1Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, & VA Medical Center, Portland, OR 97239, USA. rustayn@ohsu.edu

Abstract

Motor performance in mice can be assessed with multiple apparatus and protocols. Use of the rotarod (a.k.a. rotorod, rota-rod, roto-rod, or accelerod) is very common, and it is often used with the apparent assumption by the experimenters that it is a straightforward and simple assay of coordination. The rotarod is sensitive to drugs that affect motor coordination, including ethanol. However, there are few systematic data assessing the range of "normal" performance in mice. There are also few data exploring optimal task parameters (e.g. the influence of different speeds of rotation). In these experiments, we show that both accelerating and fixed-speed rotarod (FSRR) performance vary under different test protocols and conditions, and that moderate to high doses of ethanol disrupt performance. Under certain conditions, low doses of ethanol were found to enhance performance on the accelerating rotarod (ARR). Therefore, it is not possible to characterize individual differences fully using a single set of test parameters. For example, because of the biphasic effect of ethanol on performance, at least two doses of the drug are necessary to explore individual sensitivity differences. We offer recommendations of parameters we believe to be generally suitable for exploring the performance of new genotypes using the rotarod. We suggest that other putative tests of "ataxia" are similarly complex, and that characterizing the contribution of genetic differences will require similar attention to the details of task apparatus and protocols. These data also underscore the need to employ multiple behavioral assays in order to model a complex domain such as "ataxia" or "coordination."

PMID:
12742261
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center