Send to

Choose Destination
Fungal Genet Biol. 2003 Jun;39(1):82-93.

White-cap mutants and meiotic apoptosis in the basidiomycete Coprinus cinereus.

Author information

Department of Molecular Biology and Genetics, University of Guelph, Guelph Ont., Canada N1G 2W1.


Among many white-cap mutants of Coprinus cinereus, four distinct classes have been identified cytologically. Mutants of one class progress through meiosis normally but fail to sporulate; the defect is post-meiotic and it triggers apoptosis in the tetrad stage. Mutants of the other three classes have defects in meiotic prophase and these are: (1) those that assemble synaptonemal complexes (SCs) normally; (2) those that assemble axial elements (AEs) but not SCs; and (3) those that assemble neither AEs nor SCs even though the chromosomes are condensed and also paired. All three meiotic mutant classes arrest at meiotic metaphase I and the arrest triggers meiosis-specific apoptosis showing characteristic chromatin condensation, DNA fragmentation as shown by the TUNEL assay, cytoplasmic shrinkage, and finally total DNA degradation. Apoptosis is very cell-type specific; it occurs only in the basidia while the neighboring somatic cells are perfectly healthy and the mushroom continues to develop and mature with very few basidiospores produced. The meiotic apoptosis in C. cinereus is under strict cell cycle control rather than at any time after defect; apoptosis is triggered only after entry to meiotic metaphase. It is intriguing to note that C. cinereus has two checkpoints for arrest and entry to apoptosis: one is meiotic at the metaphase I spindle checkpoint regardless of the time of defects, and one is post-meiotic at the tetrad stage. This is in striking contrast to multiple checkpoint arrests and entries to meiotic apoptosis found in the mouse.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center