Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2003 Jul 11;278(28):25872-8. Epub 2003 May 8.

Bcl-xL mediates a survival mechanism independent of the phosphoinositide 3-kinase/Akt pathway in prostate cancer cells.

Author information

Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA.


Among various molecular strategies by which prostate cancer cells evade apoptosis, phosphoinositide 3-kinase (PI3K)/Akt signaling represents a dominant survival pathway. However, different prostate cancer cell lines such as LNCaP and PC-3 display differential sensitivity to the apoptotic effect of PI3K inhibition in serum-free media, reflecting the heterogeneous nature of prostate cancer in apoptosis regulation. Whereas both cell lines are equally susceptible to LY294002-mediated Akt dephosphorylation, only LNCaP cells default to apoptosis, as evidenced by DNA fragmentation and cytochrome c release. In PC-3 cells, Akt deactivation does not lead to cytochrome c release, suggesting that the intermediary signaling pathway is short-circuited by an antiapoptotic factor. This study presents evidence that Bcl-xL overexpression provides a distinct survival mechanism that protects PC-3 cells from apoptotic signals emanating from PI3K inhibition. First, the Bcl-xL/BAD ratio in PC-3 cells is at least an order of magnitude greater than that of LNCaP cells. Second, ectopic expression of Bcl-xL protects LNCaP cells against LY294002-induced apoptosis. Third, antisense down-regulation of Bcl-xL sensitizes PC-3 cells to the apoptotic effect of LY294002. The physiological relevance of this Bcl-xL-mediated survival mechanism is further underscored by the protective effect of serum on LY294002-induced cell death in LNCaP cells, which is correlated with a multifold increase in Bcl-xL expression. In contrast to Bcl-xL, Bcl-2 expression levels are similar in both cells lines, and do not respond to serum stimulation, suggesting that Bcl-2 may not play a physiological role in antagonizing apoptosis signals pertinent to BAD activation in prostate cancer cells.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center