Format

Send to

Choose Destination
See comment in PubMed Commons below
Chemosphere. 2003 Jul;52(2):299-312.

Biological dehalogenation and halogenation reactions.

Author information

1
Institut für Biochemie, TU Dresden, D-01062 Dresden, Germany. karl-heinz.vanpee@chemie.tu-dresden.de

Abstract

A large number of halogenated compounds is produced by chemical synthesis. Some of these compounds are very toxic and cause enormous problems to human health and to the environment. Investigations on the degradation of halocompounds by microorganisms have led to the detection of various dehalogenating enzymes catalyzing the removal of halogen atoms under aerobic and anaerobic conditions involving different mechanisms. On the other hand, more than 3500 halocompounds are known to be produced biologically, some of them in great amounts. Until 1997, only haloperoxidases were thought to be responsible for incorporation of halogen atoms into organic compounds. However, recent investigations into the biosynthesis of halogenated metabolites by bacteria have shown that a novel type of halogenating enzymes, FADH(2)-dependent halogenases, are involved in biosyntheses of halogenated metabolites. In every gene cluster coding for the biosynthesis of a halogenated metabolite, isolated so far, one or several genes for FADH(2)-dependent halogenases have been identified.

PMID:
12738254
DOI:
10.1016/S0045-6535(03)00204-2
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center