Send to

Choose Destination
J Am Chem Soc. 2003 May 14;125(19):5889-96.

Adsorption of CF4 on the internal and external surfaces of opened single-walled carbon nanotubes: a vibrational spectroscopy study.

Author information

Department of Chemistry, Surface Science Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.


Infrared spectroscopy has been used to make the first experimental discrimination between molecules bound by physisorption on the exterior surface of carbon single-walled nanotubes (SWNTs) and molecules bound in the interior. In addition, the selective displacement of the internally bound molecules has been observed as a second adsorbate is added. SWNTs were opened by oxidative treatment with O(3) at room temperature, followed by heating in a vacuum to 873 K. It was found that, at 133 K and 0.033 Torr, CF(4) adsorbs on closed SWNTs, exhibiting its nu(3) asymmetric stretching mode at 1267 cm(-1) (red shift relative to the gas phase, 15 cm(-1)). Adsorption on the nanotube exterior is accompanied by adsorption in the interior in the case of opened SWNTs. Internally bound CF(4) exhibits its nu(3) mode at 1247 cm(-1) (red shift relative to the gas phase, 35 cm(-1)). It was shown that, at 133 K, Xe preferentially displaces internally bound CF(4) species, and this counterintuitive observation was confirmed by molecular simulations. The confinement of CF(4) inside (10,10) single-walled carbon nanotubes does not result in the production of lattice modes that are observed in large 3D ensembles of CF(4).


Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center