Send to

Choose Destination
J Mol Biol. 2003 May 9;328(4):771-8.

Novel ubiquitin fusion proteins: ribosomal protein P1 and actin.

Author information

Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Botany, University of British Columbia, Vancouver, Canada.


Ubiquitin is a small, highly conserved protein found in all eukaryotic cells. Through its covalent attachment to other proteins, ubiquitin regulates numerous important cellular processes including apoptosis, transcription, and the progression of the cell cycle. Ubiquitin expression is unusual: it is encoded and expressed as multimeric head-to-tail repeats (polyubiquitins) that are post-translationally cleaved into monomers, or fused with ribosomal proteins L40 and S27a. The ubiquitin moiety is removed from these fusion proteins, but is thought to act as a chaperone in ribosome biogenesis prior to cleavage. Here we show that the chlorarachniophyte algae express several novel ubiquitin fusion proteins. An expressed sequence tag (EST) survey revealed ubiquitin fusions with an unidentified open reading frame (ORF), ribosomal protein P1 and, most interestingly, actin. Actin is an essential component of the eukaryotic cytoskeleton and is involved in a variety of cellular processes. In other eukaryotes, actin genes only exist as stand-alone ORFs, but in all chlorarachniophytes examined, actin is always encoded as a ubiquitin fusion protein. The variety of ubiquitin fusion proteins in these organisms raises interesting questions about the evolutionary origins of ubiquitin fusions, as well as their possible biochemical functions in other processes, such as cytoskeletal regulation.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center