Format

Send to

Choose Destination
Biochem J. 2003 Jul 15;373(Pt 2):603-11.

Ca(2+)-independent protein kinase C activity is required for alpha1-adrenergic-receptor-mediated regulation of ribosomal protein S6 kinases in adult cardiomyocytes.

Author information

1
Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.

Abstract

The alpha(1)-adrenergic agonist, phenylephrine (PE), exerts hypertrophic effects in the myocardium and activates protein synthesis. Both Ca(2+)-dependent protein kinase C (PKC, PKCalpha) and Ca(2+)-independent PKC isoforms (PKCdelta and epsilon ) are detectably expressed in adult rat cardiomyocytes. Stimulation of the alpha(1)-adrenergic receptor by PE results in activation of Ca(2+)-independent PKCs, as demonstrated by translocation of the delta and epsilon isoenzymes from cytosol to membrane fractions. PE also induces activation of p70 ribosomal protein S6 kinases (S6K1 and 2) in adult cardiomyocytes. We have studied the role of Ca(2+)-independent PKCs in the regulation of S6K activity by PE. Activation of S6K1/2 by PE was blocked by the broad-spectrum PKC inhibitor bisindolylmaleimide (BIM) I, whereas Gö6976, a compound that only inhibits Ca(2+)-dependent PKCs, did not inhibit S6K activation. Rottlerin, which selectively inhibits PKCdelta, also prevented PE-induced S6K activation. The isoform-specific PKC inhibitors had similar effects on the phosphorylation of eukaryotic initiation factor 4E (eIF4E)-binding protein 1, a translation repressor that, like the S6Ks, lies downstream of the mammalian target of rapamycin (mTOR). Infection of cells with adenoviruses encoding dominant-negative PKCdelta or epsilon inhibited the activation of extracellular-signal-regulated kinase (ERK) by PE, and also inhibited the activation and/or phosphorylation of S6Ks 1 and 2. The PE-induced activation of protein synthesis was abolished by BIM I and markedly attenuated by rottlerin. Our data thus suggest that Ca(2+)-independent PKC isoforms play an important role in coupling the alpha(1)-adrenergic receptor to mTOR signalling and protein synthesis in adult cardiomyocytes.

PMID:
12720544
PMCID:
PMC1223514
DOI:
10.1042/BJ20030454
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center