Format

Send to

Choose Destination
Rapid Commun Mass Spectrom. 2003;17(10):1044-50.

On-column digestion of proteins in aqueous-organic solvents.

Author information

1
Department of Molecular Biology and Biochemistry, 3330 Hospital Dr. NW, University of Calgary, Calgary, Alberta, Canada T2N 4N1.

Abstract

Proteolytic digestion is an important step in protein identification by peptide mass mapping and tandem mass spectrometry (MS/MS)-based peptide sequencing. Traditional methods of protein digestion require extended incubation times and have difficulty with proteolytically resistant proteins. Here, we describe a method in which a protein solution was combined with a mixed aqueous-organic solution (methanol, isopropanol, or acetonitrile) and passed through a microcolumn containing immobilized trypsin. Myoglobin sequence coverage was high (>85%) in all three solvents, and differences in spectra were seen among the different solution conditions. Notably, methanol-based digestions produced fewer missed cleavages while acetonitrile-based digestions produced the most peptides and the most intense mass spectra. Flow rates through the column were varied from 0.5 to 15 micro L/min, corresponding to column residence times of 78 and 2.6 s, respectively. All flow rates produced high sequence coverage of myoglobin, although, at higher flow rates, more missed cleavages were observed. No significant increase in undigested myoglobin was observed with flow rates up to 15 micro L/min. The described method was applied to the digestion of human transferrin (hTf), a proteolytically resistant protein. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analysis detected 42 peptides covering 46% of the hTf sequence. The traditional aqueous method resulted in 12 peptides (8% sequence coverage) only when high concentrations of trypsin were used. Lastly, digestion of low nanomolar myoglobin was shown to produce detectable peptides and resulted in a correct database hit. Thus, we demonstrate a method that is capable of rapid on-line digestion, thereby lending itself to high-throughput identification of proteins.

PMID:
12720284
DOI:
10.1002/rcm.1022
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center