Send to

Choose Destination
See comment in PubMed Commons below
Mol Ther. 2003 May;7(5 Pt 1):597-603.

Local adenoviral-mediated inducible nitric oxide synthase gene transfer inhibits neointimal formation in the porcine coronary stented model.

Author information

Experimental Animal Laboratory, Department of Cardiovascular Medicine, The Cleveland Clinic Foundation, Ohio 44195, USA.


In this study the effect of local adenoviral-mediated delivery of inducible nitric oxide synthase on restenosis was evaluated in a porcine coronary stented model. Local gene transfer of recombinant adenoviral vectors that encode human inducible nitric oxide synthase (AdiNOS) was tested. Control vector (AdNull) lacked a recombinant transgene. Endoluminal delivery of 1.0 x 10(11) adenoviral particles was accomplished in 45 s using the Infiltrator catheter (Interventional Technologies, San Diego, CA). Coronary stents were deployed, oversized by a ratio of 1.2:1, in the treated segments immediately after gene transfer. Fourteen animals were sacrificed at day 28 to evaluate the effects of iNOS gene transfer on morphometric indices, and 4 animals were sacrificed at day 4 for detection of human iNOS expression by RT-PCR. iNOS mRNA was detected in six of eight iNOS-transferred arteries, whereas no expression of human iNOS was detected in the nontarget arteries. Morphometric analysis showed that iNOS transfer significantly reduced neointimal formation (3.41 +/- 1.12 mm(2) vs 2.14 +/- 0.68 mm(2), P < 0.05). We concluded that efficient intramural adenovirus-mediated iNOS transfer can be achieved by using Infiltrator catheters. iNOS gene transfer significantly reduces neointimal hyperplasia following stent injury.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center