Send to

Choose Destination
J Neurosci. 2003 Apr 15;23(8):3325-35.

Role of DE-cadherin in neuroblast proliferation, neural morphogenesis, and axon tract formation in Drosophila larval brain development.

Author information

Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.


In the wild-type brain, the Drosophila classic cadherin DE-cadherin is expressed globally by postembryonic neuroblasts and their lineages ("secondary lineages"), as well as glial cells. To address the role of DE-cadherin in the larval brain, we took advantage of the dominant-negative DE-cad(ex) construct, the expression of which was directed to neurons, glial cells, or both. Global expression of DE-cad(ex) driven by a heat pulse during the early second instar resulted in a severe phenotype that included deficits in neural proliferation. Neuroblasts appeared in approximately normal numbers but had highly reduced mitotic activity. When the DE-cad(ex) construct was driven by the glial-specific driver gcm-Gal4, the effect of DE-cad(ex) on neuroblast proliferation could be replicated, which indicates that DE-cadherin acts in glial cells to promote proliferation of neuroblasts. Expression of DE-cad(ex) in neurons, cortex glia, or both results in abnormalities in cortex layering and in trajectories of secondary axons. In the wild-type brain, neuroblasts and neurons generated at different time points are arranged concentrically around the neuropile, with the DE-cadherin-positive neuroblasts and young secondary neurons at the surface, followed by older secondary neurons and primary neurons. Axons of secondary lineages follow a straight radial course toward the neuropile. Processes of glial cells located in the cortex form a scaffold, called trophospongium, that enwraps neuroblasts and neurons. Expression of DE-cad(ex) in neurons, cortex glia, or both disrupted the regular placement of neuroblasts and secondary neurons and resulted in abnormal trajectories of cell body fiber tracts. We conclude that DE-cadherin plays a pivotal role in larval brain proliferation, brain cortex morphogenesis, and axon growth.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center