Format

Send to

Choose Destination
Br J Pharmacol. 2003 Apr;138(7):1233-43.

Substance P modulates localized calcium transients and membrane current responses in murine colonic myocytes.

Author information

1
Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557-0046, U.S.A.

Abstract

1. Neurokinins contribute to the neural regulation of gastrointestinal (GI) smooth muscles. We studied responses of murine colonic smooth muscle cells to substance P (SP) and NK(1) and NK(2) agonists using confocal microscopy and the patch clamp technique. 2. Colonic myocytes generated localized Ca(2+) transients that were coupled to spontaneous transient outward currents (STOCs). SP (10(-10) M) increased Ca(2+) transients and STOCs. Higher concentrations of SP (10(-6) M) increased basal Ca(2+) and inhibited Ca(2+) transients and STOCs. 3. Effects of SP were due to increased Ca(2+) entry via L-type Ca(2+) channels, and were mediated by protein kinase C (PKC). Nifedipine (10(-6) M) and the PKC inhibitor, GF 109203X (10(-6) M) reduced L-type Ca(2+) current and blocked the effects of SP. 4. SP responses depended upon parallel stimulation of NK(1) and NK(2) receptors. NK(1) agonist ([Sar(9),Met(O(2))(11)]-substance P; SSP) and NK(2) agonists (neurokinin A (NKA) or GR-64349) did not mimic the effects of SP alone, but NK(1) and NK(2) agonists were effective when added in combination (10(-10)-10(-6) M). Consistent with this, either an NK(1)-specific antagonist (GR-82334; 10(-7) M) or an NK(2)-specific antagonist (MEN 10,627; 10(-7) M) blocked responses to SP (10(-6) M). 5. Ryanodine (10(-5) M) blocked the increase in Ca(2+) transients and STOCs in response to SP (10(-10) M). 6. Our findings show that low concentrations of SP, via PKC-dependent enhancement of L-type Ca(2+) current and recruitment of ryanodine receptors, stimulate Ca(2+) transients. At higher concentrations of SP (10(-6) M), basal Ca(2+) increases and spontaneous Ca(2+) transients and STOCs are inhibited.

PMID:
12711623
PMCID:
PMC1573765
DOI:
10.1038/sj.bjp.0705139
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center