Format

Send to

Choose Destination
Dev Biol. 2003 May 1;257(1):190-204.

Molecular link in the sequential induction of the Spemann organizer: direct activation of the cerberus gene by Xlim-1, Xotx2, Mix.1, and Siamois, immediately downstream from Nodal and Wnt signaling.

Author information

1
Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, 113-0033, Bunkyo-ku, Tokyo, Japan.

Abstract

To elucidate the molecular basis of organizer functions in Xenopus, we sought the target genes of the LIM homeodomain protein Xlim-1, which is one of the organizer-specific transcriptional activators. We found that an activated form of Xlim-1, Xlim-1/3m, initiates ectopic expression of the head-inducing organizer factor gene cerberus in animal caps. Thus, we analyzed the cerberus promoter using reporter assays. We show that three consecutive TAAT motifs of the homeodomain-binding sites between positions -141 and -118, collectively designated the "3xTAAT element," are crucial for the response of the cerberus promoter to Xlim-1/3m, and for its activation in the dorsal region of the embryo. Because cooperative activation of the cerberus promoter by Xnr1 and Xwnt8 also requires the 3xTAAT element, we focused on homeodomain transcriptional activators downstream from either Nodal or Wnt signaling. We found that wild-type Xlim-1 synergistically activates the cerberus promoter with Mix.1 and Siamois through the 3xTAAT element, and this synergy requires the LIM domains of Xlim-1. In contrast, Xotx2 acts synergistically with Mix.1 and Siamois through the TAATCT sequence at -95. Electrophoretic mobility shift assays revealed that Xlim-1, Siamois, and Mix.1 are likely to bind as a complex, in a LIM domain-dependent manner, to the region containing the 3xTAAT element. These data suggest that cerberus is a direct target for Xlim-1, Mix.1, Siamois, and Xotx2. Therefore, we propose a model for the molecular link in the inductive sequence from the formation of the organizer to anterior neural induction.

PMID:
12710967
DOI:
10.1016/s0012-1606(03)00034-4
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center