Send to

Choose Destination
Oncogene. 2003 Apr 17;22(15):2334-42.

Beta-platelet-derived growth factor receptor mediates motility and growth of Ewing's sarcoma cells.

Author information

Lombardi Cancer Center, Georgetowm University Medical Center, Washington, DC 20057-1469, USA.


The Ewing's sarcoma family of tumors (ESFT) contain a translocation, t(11;22), which results in the novel oncogenic fusion protein EWS/FLI1. Platelet-derived growth factors (PDGF) and their receptors (PDGFR) are involved in the induction and proliferation of numerous solid tumors and are the potential candidates for novel targeted antitumor therapy. Since a relation was reported between PDGF-C and EWS/FLI1, we sought to characterize the PDGF signaling pathway in ESFT. Eight out of nine ESFT cell lines were found to express significant levels of beta-PDGFR. Interestingly, none of the tested cell lines expressed alpha-PDGFR, which is the receptor isotype required for PDGF-C binding. By immunohistochemical staining 47 of 52 (90.4%) archival tumor samples from patients with ESFT were positive for beta-PDGFR. ESFT cell lines were treated with PDGF-AA or PDGF-BB ligands to evaluate downstream signaling. Autophosphorylation of beta-PDGFR and tyrosine phosphorylation of PLC-gamma, PI3Kp85 and Shc were detected only in PDGF-BB-stimulated cells that express beta-PDGFR. Receptor function was further evaluated using chemotaxis assays that showed TC-32 cell migration towards PDGF-BB. A specific PDGFR kinase inhibitor AG1295 blocked beta-PDGFR activation, downstream signaling, growth in cell culture and chemotaxis of TC-32 cells. AG1295 also delayed tumor formation and prolonged survival in an ESFT animal model. We conclude that ESFT express beta-PDGFR and that this is a functional and potentially crucial signaling pathway. Therefore, beta-PDGFRs may provide a novel therapeutic target in ESFT that can be utilized to design better treatment modalities.

[Indexed for MEDLINE]

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms


Grant support

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center