Format

Send to

Choose Destination
Pediatr Res. 2003 Jul;54(1):8-14. Epub 2003 Apr 16.

Escherichia coli in infants' intestinal microflora: colonization rate, strain turnover, and virulence gene carriage.

Author information

1
Department of Clinical Bacteriology, Sahlgrenska University Hospital, Göteborg, Sweden. forough.nowrouzian@microbio.gu.se

Abstract

Colonization by Escherichia. coli in infants might have decreased in the last decades, owing to changes in hospital routines and family lifestyle. In this study, the E. coli flora was characterized in 70 healthy Swedish infants followed for the first year of life. E. coli was isolated from rectal swabs obtained at 3 d of age and quantified in fecal samples collected at 1, 2, 4, and 8 wk of age and at 6 and 12 mo of age. Strains were typed using random amplified polymorphic DNA, and their virulence factor genes were identified by multiplex PCR. Colonization by E. coli occurred late; only 61% of the infants were positive by 2 mo of age. The turnover of individual strains in the microflora was slow (1.5 strains per infant during 6 mo, 2.1 during 1 y). Environmental factors, such as siblings, pets, or feeding mode, did not influence colonization kinetics or strain turnover rate. Genes encoding type 1 fimbriae, P fimbriae, and hemolysin were significantly more common in E. coli strains persisting for at least 3 wk in the microflora than in transient strains. The P-fimbrial class III adhesin gene was more common in E. coli from children who had a cat in their homes than in E. coli from children without pets (p = 0.01); this adhesin type is common in E. coli from cats. The late colonization and low E. coli strain turnover rate suggest limited exposure of Swedish infants to E. coli. Our results confirm that P fimbriae and other virulence factors facilitate persistence of E. coli in the human colonic microflora.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center