Send to

Choose Destination
J Biol Chem. 2003 Jul 18;278(29):26333-41. Epub 2003 Apr 16.

BRCA1 augments transcription by the NF-kappaB transcription factor by binding to the Rel domain of the p65/RelA subunit.

Author information

Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.


BRCA1 is a tumor suppressor gene mutated in cases of hereditary breast and ovarian cancer. BRCA1 protein is involved in apoptosis and growth/tumor suppression. In this study, we present evidence that p65/RelA, one of the two subunits of the transcription factor NF-kappaB, binds to the BRCA1 protein. Treatment of 293T cells with the cytokine tumor necrosis factor-alpha induces an interaction between endogenous p65/RelA and BRCA1. GST-protein affinity assay experiments reveal that the Rel homology domain of the p65/RelA subunit of NF-kappaB interacts with multiple sites within the N-terminal region of BRCA1. Transient transfection of BRCA1 significantly enhances the ability of the tumor necrosis factor-alpha or interleukin-1beta to activate transcription from the promoters of NF-kappaB target genes. Mutation of the NF-kappaB-binding sites in the NF-kappaB reporter blocks the effect of BRCA1 on transcription. Also the ability of BRCA1 to activate NF-kappaB target genes is inhibited by a super-stable inhibitor of NF-kappaB and by the chemical inhibitor SN-50. These data indicate that BRCA1 acts as a co-activator with NF-kappaB. In addition, we show that cells infected with an adenovirus expressing BRCA1 up-regulate the endogenous expression of NF-kappaB target genes Fas and interferon-beta. Together, this information suggests that BRCA1 may play a role in cell life-death decisions following cell stress by modulation of the activity of NF-kappaB.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center