Send to

Choose Destination
See comment in PubMed Commons below
Inorg Chem. 2003 Jan 27;42(2):436-45.

Experimental and theoretical study of the interaction of CO2 with alpha-Al2O3.

Author information

Dipartimento di Chimica Inorganica, Metallorganica ed Analitica, Università di Padova, Padova, Italy.


Density functional molecular cluster calculations are combined with X-ray photoelectron spectroscopy (XPS), quadrupolar mass spectrometry (QMS), and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy to investigate the interaction of CO2 with alpha-Al2O3 and partially reduced alpha-Al2O3. The electronic structure of the stoichiometric and partially reduced substrate, adsorbate geometries, chemisorption enthalpies, and adsorbate vibrational parameters are computed and discussed. Theoretical results agree quite well with experimental data and previous theoretical investigations. As far as the adsorbate-substrate interaction is concerned, the results of our calculations indicate that CO2 forms bidentate-chelating carbonate species. The bonding scheme of this surface complex implies a significant substrate-->adsorbate transfer of charge (from the occupied dangling bond of a surface Lewis base site into one component of the CO2 2 pi u LUMO) assisted by a definitely weaker adsorbate-->substrate donation (from one component of the CO2 1 pi g HOMO into an empty dangling bond of a surface Lewis acid site). Our estimate of the chemisorption enthalpy (-15 kcal/mol) agrees quantitatively with calorimetric data reported for CO2 adsorbed on high surface area alpha-alumina (-16.0 kcal/mol). [Mao, C.-F.; Vannice, M. A. Appl. Catal. A 1994, 111, 151.] According to XPS and QMS outcomes, theoretical results predict that the interaction of CO2 with partially reduced alpha-Al2O3 gives rise to the reduction of the adsorbate to CO and to the concomitant substrate reoxidation.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center