Send to

Choose Destination
See comment in PubMed Commons below
J Am Coll Surg. 2003 Apr;196(4):592-7.

Fetal tissue engineering from amniotic fluid.

Author information

  • 1Department of Surgery, Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.



We have recently shown, in an animal model, that amniotic fluid can be a source of cells for fetal tissue engineering. This study was aimed at determining whether fetal tissue constructs could also be engineered from cells normally found in human amniotic fluid.


Cells obtained from the amniotic fluid of pregnant women at 15 to 19 weeks of gestation (n=6) were cultured in Dulbecco's Modified Eagle's medium (Sigma Chemical, St Louis, MO) containing 20% fetal bovine serum and 5 ng/mL basic fibroblast growth factor in a 95% humidified, 5% CO(2) chamber at 37 degrees C. A subpopulation of morphologically distinct cells was then mechanically isolated from the rest and selectively expanded. The lineage of this subpopulation of amniocytes was determined by immunofluorescent staining with antibodies against standard intermediate filaments and surface antigens. Cell proliferation rates were determined by oxidation assay. After cell expansion, colonies of amniocytes were statically and dynamically seeded onto both unwoven, 1-mm-thick polyglycolic acid polymer scaffold and acellular human dermis for 72 hours. The resulting constructs were analyzed by scanning electron microscopy.


Amniocytes stained positively for smooth muscle actin, vimentin, cytokeratin 18, and fibroblast surface protein, and negatively for desmin, cluster of differentiation 31, and von Willebrand's factor (Dako, Carpenteria, CA). These findings are consistent with a mesenchymal, fibroblast-myofibroblast cell lineage. Mesenchymal amniocytes could be rapidly expanded in culture, based on results of the proliferation assay. Scanning electron microscopy of amniocyte constructs revealed dense, confluent layers of cells surrounding the polymer matrices and firm cell adhesion to both PGA and Alloderm (Lifecell Corp, Branchburg, NJ) scaffolds. No evidence of cell death was observed.


Subpopulations of fetal mesenchymal cells can be consistently isolated from human amniotic fluid and rapidly expanded in vitro. Human mesenchymal amniocytes attach firmly to both polyglycolic acid polymer and acellular human dermis. The amniotic fluid can be a valuable and practical cell source for fetal tissue engineering.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center