Format

Send to

Choose Destination
See comment in PubMed Commons below
Redox Rep. 2002;7(5):317-9.

Inhibition of vancomycin-induced nephrotoxicity by targeting superoxide dismutase to renal proximal tubule cells in the rat.

Author information

1
Department of Gastroenterology and Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan. nishino@msic.med.osaka-cu.ac.jp

Abstract

Vancomycin, a glycopeptide antibiotic, has a broad spectrum against methicillin-resistant Staphylococcus aureus (MRSA). Because vancomycin induces renal dysfunction, the dose and the duration of its administration are limited. The mechanism of vancomycin-induced renal dysfunction is not known. We recently synthesized a hexamethylenediamine-conjugated cationic superoxide dismutase (AH-SOD) which rapidly accumulates in renal proximal tubule cells and inhibits oxidative injury of the kidney. The present work reports the protective effects of AH-SOD against vancomycin-induced renal dysfunction. Male Wistar rats (200-210 g) were intraperitoneally administered with either 200 or 400 mg/kg of vancomycin twice a day for 7 days. Either 5 mg/kg/day AH-SOD or saline was subcutaneously injected 5 min before every vancomycin injection. Biochemical analysis revealed that plasma levels of blood urea nitrogen and creatinine increased significantly in vancomycin-treated group by an AH-SOD-inhibitable mechanism. Histological examination revealed that vancomycin also elicited a marked destruction of glomeruli and necrosis of proximal tubule by an AH-SOD inhibitable mechanism. These results suggest that oxidative stress underlies the pathogenesis of vancomycin-induced nephrotoxicity and that targeting SOD and/or related antioxidants to renal proximal tubule cells might permit the administration of higher doses of vancomycin sufficient for eradication of MRSA without causing renal injury.

PMID:
12688519
DOI:
10.1179/135100002125000884
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis
    Loading ...
    Support Center