Format

Send to

Choose Destination
See comment in PubMed Commons below
Rev Physiol Biochem Pharmacol. 2003;147:75-121. Epub 2003 Mar 25.

Peroxisome biogenesis.

Author information

1
Institut für Physiologische Chemie, Medizinische Fakultät, Ruhr-Universität Bochum, 44780 Bochum, Germany.

Abstract

Peroxisome biogenesis conceptually consists of the (a) formation of the peroxisomal membrane, (b) import of proteins into the peroxisomal matrix and (c) proliferation of the organelles. Combined genetic and biochemical approaches led to the identification of 25 PEX genes-encoding proteins required for the biogenesis of peroxisomes, so-called peroxins. Peroxisomal matrix and membrane proteins are synthesized on free ribosomes in the cytosol and posttranslationally imported into the organelle in an unknown fashion. The protein import into the peroxisomal matrix and the targeting and insertion of peroxisomal membrane proteins is performed by distinct machineries. At least three peroxins have been shown to be involved in the topogenesis of peroxisomal membrane proteins. Elaborate peroxin complexes form the machinery which in a concerted action of the components transports folded, even oligomeric matrix proteins across the peroxisomal membrane. The past decade has significantly improved our knowledge of the involvement of certain peroxins in the distinct steps of the import process, like cargo recognition, docking of cargo-receptor complexes to the peroxisomal membrane, translocation, and receptor recycling. This review summarizes our knowledge of the functional role the known peroxins play in the biogenesis and maintenance of peroxisomes. Ideas on the involvement of preperoxisomal structures in the biogenesis of the peroxisomal membrane are highlighted and special attention is paid to the concept of cargo protein aggregation as a presupposition for peroxisomal matrix protein import.

PMID:
12687401
DOI:
10.1007/s10254-003-0007-z
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center