Format

Send to

Choose Destination
Biochim Biophys Acta. 2003 Apr 11;1647(1-2):76-82.

Structure and mechanism of Escherichia coli pyridoxine 5'-phosphate oxidase.

Author information

1
Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Università La Sapienza, P.le Aldo Moro 5, 00185, via degli Apuli 9, Rome, Italy. martino.disalvo@uniroma1.it

Abstract

Escherichia coli pyridoxine 5'-phosphate oxidase (PNPOx) catalyzes the oxidation of either pyridoxine 5'-phosphate (PNP) or pyridoxamine 5'-phosphate (PMP), forming pyridoxal 5'-phosphate (PLP). This reaction serves as the terminal step in the de novo biosynthesis of PLP in E. coli and as a part of the salvage pathway of this coenzyme in both E. coli and mammalian cells. Recent studies have shown that in addition to the active site, PNPOx contains a noncatalytic site that binds PLP tightly. The crystal structures of PNPOx with one and two molecules of PLP bound have been determined. In the active site, the PLP pyridine ring is stacked almost parallel against the re-face of the middle ring of flavin mononucleotide (FMN). A large protein conformational change occurs upon binding of PLP. When the protein is soaked with excess PLP an additional molecule of this cofactor is bound about 11 A from the active site. A possible tunnel exists between the two sites. Site mutants were made of all residues at the active site that make interactions with the substrate. Stereospecificity studies showed that the enzyme is specific for removal of the proR hydrogen atom from the prochiral C4' carbon of PMP. The crystal structure and the stereospecificity studies suggest that the pair of electrons on C4' of the substrate are transferred to FMN as a hydride ion.

PMID:
12686112
DOI:
10.1016/s1570-9639(03)00060-8
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center