Send to

Choose Destination
J Lab Clin Med. 2003 Apr;141(4):242-9.

Glycated albumin increases oxidative stress, activates NF-kappa B and extracellular signal-regulated kinase (ERK), and stimulates ERK-dependent transforming growth factor-beta 1 production in macrophage RAW cells.

Author information

Institute of Metabolic Research, University City Science Center, Research University of Pennsylvania, 3508 Market Street, Suite 420, Philadelphia, PA 19104, USA.


Albumin modified by Amadori glucose adducts has been shown to modulate signal transduction and induce alterations in renal glomerular cells that contribute to the development of diabetic nephropathy. However, the participation of this nonenzymatically glycated protein in the pathobiology of atherosclerotic cardiovascular disease in diabetes has not been established. To probe this issue, we used macrophage RAW cells to assess the effects of glycated albumin on molecular events implicated in the pathogenesis of diabetes-related vascular complications. RAW cells were cultured in medium containing 5.5 mmol/L glucose and glycated or nonglycated albumin, with and without the addition of PD98059, a specific inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK), followed by analysis of phosphorylated ERK and the nuclear translocation of nuclear factor (NF)-kappa B and measurement of cellular content of thiobarbituric acid-reactive substances and the concentration of transforming growth factor (TGF)-beta(1) in the spent medium. We demonstrate, for the first time, that glycated albumin activates RAW cell ERK and promotes ERK-dependent increases in TGF-beta(1) production, oxidative stress, and NF-kappa B activation. Preincubation with the antioxidant alpha-lipoic acid partially prevented the glycated albumin-induced increase in NF-kappa B activation. These findings indicate that Amadori-modified glycated albumin modulates macrophage cell biology independent of high glucose concentration. The effects of glycated albumin on RAW cell molecular mediators and cytokine production may have pathophysiologic significance with respect to the accelerated atherosclerosis that occurs in diabetes.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center