Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2003;118(1):25-35.

Oxygen sensitivity of NMDA receptors: relationship to NR2 subunit composition and hypoxia tolerance of neonatal neurons.

Author information

1
Department of Anesthesia, Sciences 257, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0542, USA. bicklerp@anesthesia.ucsf.edu

Abstract

Neonatal rats survive and avoid brain injury during periods of anoxia 25 times longer than adults. We hypothesized that oxygen activates and hypoxia suppresses NMDA receptor (NMDAR) responses in neonatal rat neurons, explaining the innate hypoxia tolerance of these cells. In CA1 neurons isolated from neonatal rat hippocampus (mean postnatal age [P] 5.8 days), hypoxia (PO(2) 10 mm Hg) reduced NMDA receptor-channel open-time percentage and NMDA-induced increase in [Ca(2+)](i) (NMDA DeltaCa(2+)) by 38 and 68% (P<0.01), respectively. In P20 neurons the reductions were not significant. In P3-10 CA1 neurons within intact hippocampal slices, hypoxia reduced NMDA DeltaCa(2+) by 52% (P=0.002) and decreased NMDA-induced death by 45% (P=0.004). Phalloidin, a microtubule stabilizer, prevented hypoxia-induced inhibition of NMDA DeltaCa(2+) in P3-10 neurons. To test whether NMDARs prevalent in neonates (NR1 plus NR2B or NR2D subunits) are inhibited by hypoxia compared with those in mature neurons (NR2A and NR2C), we expressed these receptors in Xenopus oocytes. Compared with responses in 21% O(2), hypoxia (PO(2) 17 mm Hg) reduced currents from neonatal type NR1/NR2D receptors by 25%, increased currents from NR1/NR2C by 18%, and had no effect on NR1/NR2A or NR1/NR2B. Modulation of NMDARs by hypoxia may play an important role in the hypoxia tolerance of the mammalian neonate. In addition, oxygen sensing by NMDARs could play a significant role in postnatal brain development.

PMID:
12676134
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center