Signal strength determines the nature of the relationship between perception and working memory

J Cogn Neurosci. 2003 Feb 15;15(2):173-84. doi: 10.1162/089892903321208114.

Abstract

Neurophysiological and behavioral studies have shown that perception and memory share neural substrates and functional properties. But are perception and the active working memory of a stimulus one and the same? To address this question in the spatial domain, we compared the percept and the working memory of the position of a target stimulus embedded within a surround of moving dots. Motion in a particular direction after the target's offset biased the memory of target location in the same direction. However, motion simultaneous with a high-contrast, perceptually strong target biased the percept of target location in the opposite direction. Thus, perception and working memory can be modified by motion in qualitatively different ways. Manipulations to strengthen the memory trace had no effect on the direction of the memory bias, indicating that memory signal strength can never equal that of the percept of a strong stimulus. However, the percept of a weak stimulus was biased in the direction of motion. Thus, although perception and working memory are not inherently different, they can differ behaviorally depending on the strength of the perceptual signal. Understanding how a changing surround biases neural representations in general, and postsensory processes in particular, can help one understand past reports of spatial mislocalization.

MeSH terms

  • Computer Simulation
  • Fixation, Ocular
  • Humans
  • Memory / physiology*
  • Models, Neurological
  • Motion Perception / physiology
  • Photic Stimulation
  • Signal Detection, Psychological / physiology*
  • Space Perception / physiology*
  • Visual Perception / physiology*