Format

Send to

Choose Destination
See comment in PubMed Commons below
Nature. 2003 Apr 3;422(6931):513-5.

Reduced mixing from the breaking of internal waves in equatorial waters.

Author information

1
Applied Physics Laboratory, College of Fishery and Ocean Sciences, University of Washington, Seattle, Washington 98105, USA. gregg@apl.washington.edu

Abstract

In the oceans, heat, salt and nutrients are redistributed much more easily within water masses of uniform density than across surfaces separating waters of different densities. But the magnitude and distribution of mixing across density surfaces are also important for the Earth's climate as well as the concentrations of organisms. Most of this mixing occurs where internal waves break, overturning the density stratification of the ocean and creating patches of turbulence. Predictions of the rate at which internal waves dissipate were confirmed earlier at mid-latitudes. Here we present observations of temperature and velocity fluctuations in the Pacific and Atlantic oceans between 42 degrees N and 2 degrees S to extend that result to equatorial regions. We find a strong latitude dependence of dissipation in accordance with the predictions. In our observations, dissipation rates and accompanying mixing across density surfaces near the Equator are less than 10% of those at mid-latitudes for a similar background of internal waves. Reduced mixing close to the Equator will have to be taken into account in numerical simulations of ocean dynamics--for example, in climate change experiments.

Comment in

PMID:
12673248
DOI:
10.1038/nature01507
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center