Send to

Choose Destination
See comment in PubMed Commons below
Sci Total Environ. 2003 Apr 15;305(1-3):117-27.

Field assessment of lead immobilization in a contaminated soil after phosphate application.

Author information

Center for Mineral Technology, Ministry of Science and Technology, Av. IpĂȘ 900, Ilha da Cidade Universitaria, 21941-590, Rio de Janeiro, Brazil.


A pilot-scale field demonstration was conducted at a Pb-contaminated site to assess the effectiveness of Pb immobilization using P amendments. The test site was contaminated by past battery recycling activities, with average soil Pb concentration of 1.16%. Phosphate amendments were applied at a 4.0 molar ratio of P/Pb with three treatments: T1, 100% P from H(3)PO(4); T2, 50% from H(3)PO(4)+50% from Ca(H(2)PO(4))(2); and T3, 50% from H(3)PO(4)+5% phosphate rock. Soil samples were collected and characterized 220 days after P application. Surface soil pH was reduced from 6.45 to 5.05 in T1, to 5.22 in T2, and to 5.71 in T3. Phosphate treatments effectively transformed up to 60% of total soil Pb from the non-residual fraction (sum of water soluble and exchangeable, carbonate, Fe-Mn oxide, and organic fractions) to the residual fraction relative to the control. In addition, P treatments reduced Toxicity Characteristic Leaching Procedure (TCLP) Pb from 82 mg l(-1) to below EPA's regulatory level of 5 mg l(-1) in the surface soil. Scanning electron microscopy-energy dispersive X-ray elemental analysis and X-ray diffraction analysis indicated formation of insoluble chloropyromorphite [Pb(5)(PO(4))(3)Cl] mineral in the P-treated soils. Although H(3)PO(4) is necessary to dissolve meta-stable Pb in soil for further lead immobilization, it should be used with caution due to its potential secondary contamination. A mixture of H(3)PO(4) and Ca(H(2)PO(4))(2) or phosphate rock was effective in immobilizing Pb with minimum adverse impacts associated with pH reduction.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center