Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2003 Apr 8;42(13):3874-81.

Inhibition of serine proteinases plasmin, trypsin, subtilisin A, cathepsin G, and elastase by LEKTI: a kinetic analysis.

Author information

Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4095, USA.


The human LEKTI gene encodes a putative 15-domain serine proteinase inhibitor and has been linked to the inherited disorder known as Netherton syndrome. In this study, human recombinant LEKTI (rLEKTI) was purified using a baculovirus/insect cell expression system, and the inhibitory profile of the full-length rLEKTI protein was examined. Expression of LEKTI in Sf9 cells showed the presence of disulfide bonds, suggesting the maintenance of the tertiary protein structure. rLEKTI inhibited the serine proteinases plasmin, subtilisin A, cathepsin G, human neutrophil elastase, and trypsin, but not chymotrypsin. Moreover, rLEKTI did not inhibit the cysteine proteinase papain or cathepsin K, L, or S. Further, rLEKTI inhibitory activity was inactivated by treatment with 20 mM DTT, suggesting that disulfide bonds are important to LEKTI function. The inhibition of plasmin, subtilisin A, cathepsin G, elastase, and trypsin by rLEKTI occurred through a noncompetitive-type mechanism, with inhibitory constants (K(i)) of 27 +/- 5, 49 +/- 3, 67 +/- 6, 317 +/-36, and 849 +/- 55 nM, respectively. Thus, LEKTI is likely to be a major physiological inhibitor of multiple serine proteinases.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center