Format

Send to

Choose Destination
Neural Netw. 1999 Apr;12(3):541-551.

Hierarchical classification with a competitive evolutionary neural tree.

Author information

1
School of Information Sciences, University of Hertfordshire, Hatfield, UK

Abstract

A new, dynamic, tree structured network, the Competitive Evolutionary Neural Tree (CENT) is introduced. The network is able to provide a hierarchical classification of unlabelled data sets. The main advantage that the CENT offers over other hierarchical competitive networks is its ability to self determine the number, and structure, of the competitive nodes in the network, without the need for externally set parameters. The network produces stable classificatory structures by halting its growth using locally calculated heuristics. The results of network simulations are presented over a range of data sets, including Anderson's IRIS data set. The CENT network demonstrates its ability to produce a representative hierarchical structure to classify a broad range of data sets.

PMID:
12662695

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center