Format

Send to

Choose Destination
Rapid Commun Mass Spectrom. 2003;17(7):738-45.

Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath.

Author information

1
Department of Geological Sciences, Michigan State University, East Lansing, MI 48824, USA. rsutka@atcc.org

Erratum in

  • Rapid Commun Mass Spectrom. 2004;18(12):1411-2.

Abstract

The relative importance of individual microbial pathways in nitrous oxide (N(2)O) production is not well known. The intramolecular distribution of (15)N in N(2)O provides a basis for distinguishing biological pathways. Concentrated cell suspensions of Methylococcus capsulatus Bath and Nitrosomonas europaea were used to investigate the site preference of N(2)O by microbial processes during nitrification. The average site preference of N(2)O formed during hydroxylamine oxidation by M. capsulatus Bath (5.5 +/- 3.5 per thousand) and N. europaea (-2.3 +/- 1.9 per thousand) and nitrite reduction by N. europaea (-8.3 +/- 3.6 per thousand) differed significantly (ANOVA, f((2,35)) = 247.9, p = 0). These results demonstrate that the mechanisms for hydroxylamine oxidation are distinct in M. capsulatus Bath and N. europaea. The average delta(18)O-N(2)O values of N(2)O formed during hydroxylamine oxidation for M. capsulatus Bath (53.1 +/- 2.9 per thousand) and N. europaea (-23.4 +/- 7.2 per thousand) and nitrite reduction by N. europaea (4.6 +/- 1.4 per thousand) were significantly different (ANOVA, f((2,35)) = 279.98, p = 0). Although the nitrogen isotope value of the substrate, hydroxylamine, was similar in both cultures, the observed fractionation (delta(15)N) associated with N(2)O production via hydroxylamine oxidation by M. capsulatus Bath and N. europaea (-2.3 and 26.0 per thousand, respectively) provided evidence that differences in isotopic fractionation were associated with these two organisms. The site preferences in this study are the first measured values for isolated microbial processes. The differences in site preference are significant and indicate that isotopomers provide a basis for apportioning biological processes producing N(2)O.

PMID:
12661029
DOI:
10.1002/rcm.968
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center